Removing Conformal Coatings
Conformal coatings provide a long-term, stable and reliable encapsulation method for the electronic components from the environmental effects. Different industries and service conditions calls for different protective coatings. In some cases, changes in the requirements or mistakes would call for action to remove the coating. While some coating materials are easily removed, some are virtually impossible to remove without damaging the products (eg. epoxy) . The coating removal process has been standardized by the standard IPC-7711C/7721C titled Rework, Modification and Repair of Electronic Assemblies [1]. According to the IPC-7711C/7721C coating removal starts by the identification of conformal coating (Chart. 1) type and followed by the selection of the method to be used depending on the substrate and components. If prepared onsite the coating material is generally known, but if the coating was done elsewhere the following chart can be used to identify the type of conformal coating.
Figure 1 IPC-7711C/7721C Conformal coating defining chart (Revision: B Date: 11/07) [1]
The method is selected in a way that the least or no damage is given to the substrate (be it PCB or silicon wafer etc.) and its components. Possible methods listed in the standard (Fig. 2) are listed below. Besides, oxygen plasma, laser ablation are methods that are highly preferred for conformal coating removal from microelectronics.
Figure 2 List of methods used in conformal coating removal IPC-7711C/7721C
Solvent Method: Removal of the conformal coating using a solvent is very attractive due to the bench-top type of process. Most conformal coatings are chemically very resistant and are very hard to remove by solvents. For small parts the solvent is applied using a using a foam swab. For larger parts the product can be immersed if the chemicals are not damaging the underlying electronic parts.
Peeling Method: Mechanically peeling off of the coating. This method might require pre-processing such as thermal, chemical processes. The peeling of can be done if the surface adhesion between the conformal coating and the bond surface is not strong. However, conformal coatings usually have very strong bonding interfaces with the substrates. While the method sounds attractive it is mostly not applicable.
Thermal Method: Thermal removal is done using the controlled heating. The sample is heated up in a controlled way and the coating can be tested for removal in a tiny spot. The test temperature elevated from room temperature to approximately at 100 °C and can be increased gradually if needed. The viscosity changes and component thermal budget must be watched out to protect the overall health of the electronics.
Grinding/Scraping: While this method sounds relatively easy it can be very invasive and extra attention is required. Friction between the abrasive and the surface or components may lead to device failure.
Micro Blasting Method: Abrasion operations can generate electrostatic charges however the chamber is grounded dissipating the static charges. Micro abrasive blasting propels explicit formulas of inert gas/dry air and abrasive media at the parylene-coated component, via a tiny nozzle attached to a stylus; either a handheld human or automated systems can be used to pinpoint the targeted removal area.
Table 1 Conformal coating materials and removal method according to IPC-7711C/7721C.
Conformal |
Removal Method |
Material Properties |
||||||||
Solvent |
Peeling |
Thermal |
Grinding/ |
Micro |
Hardness |
Surface Adhesion |
Precursor |
Ease of removal |
||
Parylene |
THF 3-4 hrs |
PREFERED |
YES |
YES |
hard |
Very strong |
Powder |
Very Hard |
||
Epoxy |
Methylene Chloride NOT compatible with PCBs and electronics Cancer risk |
PREFERED Heat above epoxy softening point (Tg). Damages most electronics. |
YES |
YES |
hard |
Very strong |
Liquid |
Very Hard |
||
Polyurethane |
PREFERRED |
PREFERED |
YES |
YES |
hard/med/soft |
Medium |
Liquid |
Hard |
||
Acrylic |
PREFERED (alcohol) |
YES |
YES |
YES |
hard/medium |
Strong |
Liquid |
Easy |
||
Silicone |
PREFERED (thin ?0.064 cm ?0.025 in |
PREFERED (thick) >0.064 cm >0.025 in |
YES |
YES |
soft |
Low to strong |
Liquid |
Moderate |
||
Acrylic is very easy to handle and readily solvable in common solvents such as xylene. If the coating must be removed or reworked after the application, acrylic is the best choice for the application.
Polyurethane, parylene, epoxy and silicone are chemically inert and their chemical removal is not very easy or may require chemicals that can also damage the PCB and underlying substrate. Chemical removal of epoxy and polyurethane is done by harsh chemicals which is not a healthy option. Mostly thermal coating removal is advised for epoxy. Thermal coating removal technique is not always advisable as it can leave stains, discoloration and damage the electronic components.
Parylene is a pinhole free, uniform conformal coating that can coat the smallest crevices of the electronic products and it can be hardly removed by chemicals. Tetrahydrofuran (THF),a very harsh chemical, can aid in the delamination of the parylene layer which can later be removed by tweezers. Approximately 3 hours of immersion is needed for delamination. Benzolyl benzoate and chloronapthelene above 150 °Cs are also known to remove parylene however they can damage the PCB and electronic components therefore are not advised. Chemical removal of parylene is not a recommended process.
Laser ablation, reactive ion etching (oxygen plasma), and micro-abrasion are the best options for the removal of parylene. These methods can be applied precisely for microelectronic structures on silicon wafers as well. Also, micro abrasion blasting using abrasives and compressed air can remove conformal coatings such as parylene and epoxy abrasives.
Mechanical manipulation of the coatings must be applied carefully since they can cause unexpected failures due to mechanical impact on the structures.
随着电子产品防水需求的不断提高,从原先的 IP54到现在的IP67IP68等级!市场上出现了防水透气膜和防水透音膜,目前这两种不同的材料应用被搞混了,今天便与大家一起讨论防水透气
最近各地降雨量激增,所以手机就难免会沾点水,作为生活中不可或缺的电子产品,防水已经成为一个十分重要重要功能,而且个人对目前的IP68手机市场是相当不满意的。为什么?太贵
自然界中荷叶具有出淤泥而不染的典型不沾水特性(学术上称为Cassie-Baxter状态),具有自清洁、抗结冰、减阻、抗腐蚀等广泛应用价值,而玫瑰花瓣则具有水滴高粘附特性(称为Wenze
派瑞林各种粉材真空镀膜技术加工 纳米涂层防水处理
派瑞林各种粉材真空镀膜技术加工 纳米涂层防水处理
高阻隔强绝缘防汗液涂层蓝牙耳机3C电子产品IPX7纳米材料
高阻隔强绝缘防汗液涂层蓝牙耳机3C电子产品IPX7纳米材料
耐磨超疏水纳米材料 绝缘子架空导线电缆桥梁防覆冰涂层
耐磨超疏水纳米材料 绝缘子架空导线电缆桥梁防覆冰涂层
真空等离子气相沉积技术纳米防水镀膜加工 产能5万片天
真空等离子气相沉积技术纳米防水镀膜加工 产能5万片天
亲水疏油自洁净纳米涂层 易去污 无机防紫外高硬度材料
亲水疏油自洁净纳米涂层 易去污 无机防紫外高硬度材料
台湾超亲水防雾塑料专用 附着力好 透过率高 持久有效
台湾超亲水防雾塑料专用 附着力好 透过率高 持久有效