How Long Will Parylene Coating Last?
The stability and insulation property of Parylene conformal coating is critical for the reliable operation of electronic devices throughout their lifetime (PCBs, MEMS, sensors, implants and so on.). The failure mechanism of the conformal coating layers is known to be due to pore formation, blistering, delamination and thinning or pinhole formation due to dielectric breakage of the coating over time [1], [2]. Therefore, the surface where the interface between the conformal coating and the substrate will be formed is of high importance. The cleanliness of this surface has a great impact on the final results of the conformal coating process and the coatings durability. At Diamond MT we provide professional surface cleaning services ensuring the long lasting results for your components. Also, the parylene conformal coating thickness and parylene varieties required for different service are considerations to take into account. We offer our professional services to direct our customers. Some of the variables of different service conditions can be listed as:
-
Humidity /Moisture: Naval applications, salty water, bodily fluids for implants, humid areas.
-
Temperature: Thermal shock conditions (High thermal gradients), hot and extreme cold climates, body (37 °C’s).
-
Chemicals: Oxidative gases, acidic, basic liquids can penetrate through protective layers inevitably leading to the device failure.
-
Mechanical impact: Sensors may encounter friction, compression, tensile stresses and bending under service conditions.
Accelerated lifetime tests:
Method: Test methods for standard electronic and electrical component parts are determined by MIL-STD-202. Testing of sealing, mechanical, chemical and thermal properties are described by MIL-STD-202 [3]. Most common test method is the accelerated-lifetime soak testing. The test is conducted in saline at elevated temperatures that is relevant to the electronic part and the lifetime of Parylene conformal coatings are determined.
Literature: Literature lists a variety of applications where a combination of affecters are found together.
-
Oxidation and Temperature:
An extensive study on the effect of temperature and oxidation of Parylene C and N was conducted. The study used films of both Parylene N and C of thicknesses between 10 and 20 μm. Temperatures between 125°C and 200°C were used to detect the degradation of Parylene films in terms of their flexibility and mechanical properties. It was reported that the minimum useful lifetime of Parylene conformal coating at 25 °C (in the absence of light) is 2,200 years for type N and 130,000 years for type C. At higher temperatures (Table 1) these numbers drop abruptly [4].
Table 2: Estimation of failure time for Parylenes at various temperatures [4].
Temp |
25 °C |
150 °C |
164 °C |
175 °C |
184 °C |
200 °C |
Parylene N |
2,200 yr |
4.5 - 5.9 hr |
0.6 hr |
0.3 hr |
0.1 hr |
0.06 hr |
Parylene C |
130,000 yr |
55 hr |
5.7 hr |
0.7 hr |
-
Moisture, corrosion, temperature:
For use in biomedical applications, the electronic chip is packaged in Parylene C (FDA approved, biocompatible) conformal coating. The package is immersed in saline solution at body temperature (37°C) for elongated times. Table 1 resumes the results of the study. The thicker, 9.2 μm Parylene C has a long term stability. It has been shown that the Parylene can protect the metal electrode for more than 60 years. This result shows that Parylene C is an excellent structural and packaging material for biomedical applications when applied at right thickness [5].
In another study, a Parylene C packaged intraocular coil for retinal prostheses were investigated for their stability at 77 and 90 °C’s. Again, a long term accelerated lifetime soak testing was performed in saline. In addition, a post-fabrication heat-treatment was performed in a vacuum oven with N2 backfill at 200 ºC, this treatment is known to lower the water permeation of Parylene thin film. The failure modes were listed as bubbles and delamination in the sample soaked at 90 °C after 23 days. No delamination or major physical corrosion was reported for the sample immersed at 77 ºC for over 80 days. Using these results they predicted parylene C stability at 37 ºC for over 20 years [6].
Figure 1: A fabricated intraocular coil, the metal coil is encapsulated between two layers of Parylene C (each parylene layer is 5 μm thick and the total thick is ≈ 10 μm) [6].
Pressure sensors are enclosed in silicone oil to protect the circuit from water molecules or ions. In a study, researchers exploited the unusual fact that parylene can deposited directly on oil and its long-term lifetime of implantable pressure sensors were studied. In the study, the sensor was encapsulated in situ using parylene-C or –D, also the study used an uncoated control sample which failed in a day at 67 °C in saline. It was reported that the longest saline soaked device while maintaining adequate sensitivity and minimal offset was the one with “30,000cSt Silicone Oil + 27 μm Parylene D,” that lasted for 6 weeks at 77 °C, equivalent to 21 months at 37 °C. Parylene D is similar to Parylene C with a higher glass transition temperature thus can withstand moderately higher temperatures [7].
In conclusion, we can state that when the parylene type, thickness are selected carefully, the surface preparation is correctly done the parylene conformal coating is very stable and will withstand for the lifetime of the devices they protect.
REFERENCES:
[1] S. Minnikanti et al., “Lifetime assessment of atomic-layer-deposited Al2O3-Parylene C bilayer coating for neural interfaces using accelerated age testing and electrochemical characterization,” Acta Biomater., vol. 10, no. 2, pp. 960–967, Feb. 2014, doi: 10.1016/j.actbio.2013.10.031.
[2] A. Heid, R. von Metzen, A. Stett, and V. Bucher, “Examination of dielectric strength of thin Parylene C films under various conditions,” Curr. Dir. Biomed. Eng., vol. 2, no. 1, Jan. 2016, doi: 10.1515/cdbme-2016-0012.
[3] “MIL-STD-202 , Test Method Standard for Electronic and Electrical Component Parts.” https://www.document-center.com/standards/show/MIL-STD-202 (accessed Dec. 18, 2019).
[4] D. W. Grattan and M. Bilz, “The Thermal Aging of Parylene and the Effect of Antioxidant,” Stud. Conserv., vol. 36, no. 1, pp. 44–52, 1991, doi: 10.2307/1506451.
[5] W. Li, D. C. Rodger, E. Meng, J. D. Weiland, M. S. Humayun, and Y.-C. Tai, “Wafer-Level Parylene Packaging With Integrated RF Electronics for Wireless Retinal Prostheses,” J. Microelectromechanical Syst., vol. 19, no. 4, pp. 735–742, Aug. 2010, doi: 10.1109/JMEMS.2010.2049985.
[6] W. Li, D. C. Rodger, E. Meng, J. D. Weiland, M. S. Humayun, and Y.-C. Tai, “Flexible Parylene Packaged Intraocular Coil for Retinal Prostheses,” in 2006 International Conference on Microtechnologies in Medicine and Biology, May 2006, pp. 105–108, doi: 10.1109/MMB.2006.251502.
[7] A. M. Shapero, Y. Liu, and Y.-C. Tai, “Parylene-on-oil packaging for long-term implantable pressure sensors,” Biomed. Microdevices, vol. 18, no. 4, p. 66, Jul. 2016, doi: 10.1007/s10544-016-0089-4.
随着电子产品防水需求的不断提高,从原先的 IP54到现在的IP67IP68等级!市场上出现了防水透气膜和防水透音膜,目前这两种不同的材料应用被搞混了,今天便与大家一起讨论防水透气
最近各地降雨量激增,所以手机就难免会沾点水,作为生活中不可或缺的电子产品,防水已经成为一个十分重要重要功能,而且个人对目前的IP68手机市场是相当不满意的。为什么?太贵
自然界中荷叶具有出淤泥而不染的典型不沾水特性(学术上称为Cassie-Baxter状态),具有自清洁、抗结冰、减阻、抗腐蚀等广泛应用价值,而玫瑰花瓣则具有水滴高粘附特性(称为Wenze
派瑞林各种粉材真空镀膜技术加工 纳米涂层防水处理
派瑞林各种粉材真空镀膜技术加工 纳米涂层防水处理
高阻隔强绝缘防汗液涂层蓝牙耳机3C电子产品IPX7纳米材料
高阻隔强绝缘防汗液涂层蓝牙耳机3C电子产品IPX7纳米材料
耐磨超疏水纳米材料 绝缘子架空导线电缆桥梁防覆冰涂层
耐磨超疏水纳米材料 绝缘子架空导线电缆桥梁防覆冰涂层
真空等离子气相沉积技术纳米防水镀膜加工 产能5万片天
真空等离子气相沉积技术纳米防水镀膜加工 产能5万片天
亲水疏油自洁净纳米涂层 易去污 无机防紫外高硬度材料
亲水疏油自洁净纳米涂层 易去污 无机防紫外高硬度材料
台湾超亲水防雾塑料专用 附着力好 透过率高 持久有效
台湾超亲水防雾塑料专用 附着力好 透过率高 持久有效